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Abstract. We consider the photon field between an unusual configuration of infinite parallel
plates, namely: a perfectly conducting plate(ε →∞) and an infinitely permeable one(µ→∞).
After quantizing the vector potential in the Coulomb gauge, we obtain explicit expressions for
the vacuum expectation values of field operators of the form〈EiEj 〉0 and〈BiBj 〉0. These field
correlators allow us to re-obtain the Casimir effect for this set-up and to discuss the light velocity
shift caused by the presence of plates (Scharnhorst effect: Scharnhorst (1990Phys. Lett.B 236
354), Barton (1990Phys. Lett.B 237559), Barton and Scharnhorst (1993J. Phys. A: Math. Gen.
262037)) for both scalar and spinor QED.

1. Introduction

Ordinary QED deals with processes in unbounded spacetime, with no boundary conditions
whatsoever or external fields imposed on, and without compactification of, any spatial
dimension. Nonetheless, a number of physical interesting processes involving photons and
electrons (bound or not) occur within the confines of physical boundaries, that is, within a
cavity. As an example consider the spontaneous emission by an atom. This process is due
to the coupling of electromagnetic vacuum oscillations to the bound electron in the atom
and in free space is a position-independent observable. However, inside a cavity the vacuum
electromagnetic field modes can change substantially and as a consequence the spontaneous
emission rate is affected and can become position-dependent [4–6] (see also the textbook by
Milonni [7] and references therein). For a half-space ‘cavity’ comprised by a single metallic
wall, for instance, the spontaneous emission rate goes with the reciprocal of the fourth power
of the distance of the atom to the wall. In a broader sense, we can say that inside the cavity
we can think of the atom as probing the local fluctuations of the electromagnetic vacuum.

The influence of the atom–cavity interaction on the atomic spontaneous emission rate is
one among a large number of effects of the so-called cavity QED, a specific branch of QED
that basically deals with the influences of the surroundings of a physical system on its radiative
properties (see [8,9] for recent reviews). Although the first cavity QED effect is attributed to
Purcell [10], who pointed out that the spontaneous emission process associated with nuclear
magnetic moment transitions at radio frequencies could be enhanced if the system were coupled
to a ressonant external electric circuit, we can say that the first detailed papers on this subject
were those written by Casimir and Polder [11] in which, among other things, forces between
polarizable atoms and metallic walls were treated, and by Casimir in his seminal work [12]. In
its electromagnetic version, the Casimir effect is the macroscopic attraction force between two

0305-4470/99/244463+12$19.50 © 1999 IOP Publishing Ltd 4463



4464 M V Cougo-Pinto et al

neutral, parallel and perfectly conducting infinite surfaces due to the redistribution of normal
modes of the vacuum electromagnetic field between them. Experimentally, the Casimir effect
between metallic surfaces was first observed by Sparnaay [13] and recently with remarkable
accuracy by Lamoreux [14] and Mohideen and Roy [15]. The various Casimir effects have
been the subject of many studies, for a review see [16–18].

Still another spectacular instance of cavity QED is the Scharnhorst effect [1, 2]. This
effect is basically the velocity shift caused by the change in the zero-point energy density of
the quantized electromagnetic field induced by the presence of a perfectly conducting pair of
plates. Recall that an external electromagnetic field such as that of propagating light couples
to the quantized radiation field through fermionic loops. The Scharnhorst effect is not the only
example where nontrivial vacua affect the speed of light. In fact, this subject has attracted the
attention of many physicists in recent years [19–24].

It is clear from what was stated above that an analysis of the QED vacuum inside cavities
is crucial for an understanding of its observable properties. Here we consider the QED vacuum
between an unsual pair of plates. We place an infinite perfectly conducting (ε →∞) surface
parallel to a second infinite perfectly permeable (µ → ∞) surface held at fixed distanceL
from the first. This set-up, which we call Boyer plates, was first considered by Boyer in order
to compute the corresponding Casimir effect in the framework of random electrodynamics [25]
and leads to a repulsive force. This result is somewhat intriguing, since it seems to contradict
the explanation given for the usual attractive Casimir effect which suggests that there is a
greater number of modes outside the plates than inside. In fact, this is not true: there is only
a rearrangement of modes; for a clear explanation of this problem see [26] and references
therein. For the generalizedζ -function approach applied to the repulsive Casimir effect for
parallel plates geometry see [27, 28]. It is worth mentioning that if we impose on a scalar
quantum field mixed boundary conditions (Dirichlet on one plate and Newmann on the other)
the resultant Casimir effect will be also repulsive [29]. With respect to the Casimir effect, the
problem of quantizing the electromagnetic field between the unusual pair of plates described
above and the problem of quantizing a massless scalar field between two planes where mixed
boundary conditions are assumed as in [29] are closely connected. In fact, it can be shown
that the Casimir energy density for the former case can be computed if in the latter we just
multiply the result by a factor of two, to take into account the two possible polarizations of the
photon. However, we should emphasize here that this procedure works well only for the plane
geometry.

This paper is organized as follows. In section 2 we determine the photon fieldA(r, t) in
the region between Boyer plates making use of the Coulomb gauge. We also evaluate the field
operator correlators〈ÊiÊj 〉0 and〈B̂iB̂j 〉0 with the aid of a simple but efficient regularization
prescription. In section 3 we apply our results to re-obtain the repulsive Casimir pressure of
this set-up. In section 4 we discuss the Scharnhorst effect but for this different situation. In
particular, we show that, contrary to the case of the usual pair of conducting plates considered
by Scharnhorst [1] and Barton [2], Boyer plates lead to a decrease in the speed of a light for
propagation perpendicular to the plates. In section 5 we discuss the Scharnhorst effect for the
case of scalar QED trying to keep as much as possible a close analogy with the spinorial QED
case. Section 6 contains final remarks and conclusions.

We use natural units so that Planck’s constant ¯h and the speed of lightc are set equal to
one. For the electromagnetic fields we employ the unrationalized Gaussian system. The fine
structure constant readsα = e2 ≈ 1

137.
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2. Vacuum electromagnetic field between Boyer’s plates

The set-up we consider consists of two infinite parallel surfaces (the plates), one of which is
considered to be a perfect conductor (ε → ∞) while the other is supposed to be perfectly
permeable (µ → ∞). We also choose Cartesian axes in such a way that theOZ axis is
perpendicular to both surafces. The perfectly conducting surface is placed atz = 0 and the
perfectly permeable one atz = L. The electromagnetic fields must satisfy the following
boundary conditions: (a) the tangential componentsEx andEy of the electric field as well as
the normal componentBz of the magnetic field must vanish on the metallic plate atz = 0.
(b) The tangential componentsBx andBy of the magnetic field must vanish on the permeable
plate atz = L. It is convenient to work with the vector potentialA(r, t) in the Coulomb gauge
in which∇ ·A(r, t) = 0,E(r, t) = −∂A(r, t)/∂t andB(r, t) = ∇ ×A(r, t). Then the
physical boundary conditions combined with our choice of gauge permit us to translate the
boundary conditions in terms of the vector potential components. Atz = 0 we have:

Ax(x, y,0, t) = 0 Ay(x, y,0, t) = 0
∂

∂z
Az(x, y,0, t) = 0. (1)

On the other hand, atz = L we have:

∂

∂z
Ax(x, y, L, t) = 0

∂

∂z
Ay(x, y, L, t) = 0 Az(x, y, L, t) = 0. (2)

The vector potential operatorA(r, t) that satisfies the wave equation, the Coulomb gauge
condition and the boundary conditions stated above can be written in the form:

A(r, t) = 1

π

(π
L

)1
2
∞∑
n=0

∫
d2κ√
ω

{
a(1)(κ, n)κ̂× ẑ sin

[(
n +

1

2

)
πz

L

]

+a(2)(κ, n)

[
κ̂

i(n + 1
2)

ωL
sin

[(
n +

1

2

)
πz

L

]
− ẑ

κ

ω
cos

[(
n +

1

2

)
πz

L

]]}
ei(κ·ρ−ωt) + h.c. (3)

whereκ = (kx, ky) andρ is the position vector in thexy-plane. The normal frequencies are
given by

ω = ω(κ, n) =
√
κ2 +

(
n +

1

2

)2
π2

L2
. (4)

The Fourier coefficientsa(λ)(κ, n), whereλ = 1, 2 is the polarization index, are operators
acting in the photon state space and satisfy the commutation relation

[a(λ)(κ, n), a(λ
′)(κ′, n′)] = δλλ′δnn′δ(κ− κ′). (5)

It is convenient to write the vector potential in the general form:

A(r, t) =
∞∑
n=0

∫
d2κ

2∑
λ=1

a(λ)(κ, n)A(λ)
κn (r)e

−iω(κ,n)t + h.c. (6)

whereA(λ)
κn (r) denotes the mode functions. The mode functions for each polarization state

obey the Helmholtz equation and satisfy the boundary conditions stated above. In our case the
mode functions are given by:

A(1)
κn(r) =

1

π

(π
L

)1
2 1√

ω
sin

[(
n +

1

2

)
πz

L

]
e−iκ·ρκ̂× ẑ (7)



4466 M V Cougo-Pinto et al

and

A(2)
κn(r) =

1

π

(π
L

)1
2 1√

ω

[
κ̂

inπ

Lω
sin

[(
n +

1

2

)
πz

L

]
− ẑ κ

ω
cos

[(
n +

1

2

)
πz

L

]]
e−iκ·ρ. (8)

Next we evaluate the electric field operatorE(r, t). Recalling thata(λ)(κ, n)|0〉 = 0 we first
write for the correlators〈Ei(r, t)Ej (r, t)〉0 a general expression of the form:

〈Ei(r, t)Ej (r, t)〉0 =
∑
α

Eiα(r)E
∗
jα(r) (9)

where we have introduced the mode functionsEiα(r) for the electric field. In our case (7) and
(8) yield

E
(1)
iκn(r) =

i

π

(ωπ
L

)1
2

sin

[(
n +

1

2

)
πz

L

]
e−iκ·ρ(κ̂× ẑ)i (10)

and

E
(2)
iκn(r) =

i

π

(ωπ
L

)1
2

[
κ̂i

inπ

Lω
sin

[(
n +

1

2

)
πz

L

]
− ẑi κ

ω
cos

[(
n +

1

2

)
πz

L

]]
e−iκ·ρ. (11)

Now we substitute (10) and (11) into (9), writêκi = cosφ δix + sinφ δiy , ẑi = δiz and
(κ̂× ẑ)i = sinφδix − cosφδiy , whereφ is the azimuthal angle in thexy-plane and compute
all angular integrals. In this way we wind up with

〈Êi(r, t)Êj (r, t)〉0 =
(

2

π

)(π
L

) δ‖ij
2

∞∑
n=0

sin2

[(
n +

1

2

)
πz

L

] ∫ ∞
0

dκ κω(κ, n)

+

(
2

π

)(π
L

) (π
L

)2 δ
‖
ij

2

∞∑
n=0

sin2

[(
n +

1

2

)
πz

L

](
n +

1

2

)2 ∫ ∞
0

dκ κω−1(κ, n)

+

(
2

π

)(π
L

)
δ⊥ij

∞∑
n=0

cos2
[(
n +

1

2

)
πz

L

] ∫ ∞
0

dκ κ3ω−1(κ, n) (12)

whereδ‖ij := δixδjx +δiyδjy andδ⊥ij := δizδjz. Equation (12) gives only a formal expression for
the field correlator〈Ei(r, t)Ej (r, t)〉0, since it is an ill-defined expression plagued by divergent
terms. Therefore, it lacks physical meaning unless we adopt a regularization prescription. We
will first regularize the integrals in equation (12) by using a method based on an analytical
extension to the complex plane. Consider for example the first integral that appears on the rhs
of (12),

I1(n, L) :=
∫ ∞

0
dκκ

(
κ2 +

(
n +

1

2

)2
π2

L2

)1/2

.

Since this integral diverges for largeκ, it is natural to modify the integrand so that the integral
becomes finite. Our choice will be

I1(n, L) −→ Ireg1 (n, L; s) :=
∫ ∞

0
dκ κ

(
κ2 +

(
n +

1

2

)2
π2

L2

)1/2−s

and after explicit evaluation of this integral we take the limits → 0. For the moment, let
us assume that Res is large enough to give a precise mathematical meaning for the previous
integral. Then, making use of the following integral representation of the Euler beta function,
(cf formula 3.251.2 [30]):∫ ∞

0
dx xµ−1(x2 + a2)ν−1 = B

2

(µ
2
, 1− ν − µ

2

)
aµ+2ν−2 (13)
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whereB(x, y) = 0(x)0(y)/0(x + y), which holds for Re(ν + µ

2 ) < 1 and Reµ > 0, we get

Ireg1 (n, L; s) = 1

2

[(
n +

1

2

)
π

L

]3−2s
0(s − 3/2)

0(s − 1/2)
= 1

(2s − 3)

[(
n +

1

2

)
π

L

]3−2s

. (14)

Inserting this result into the first term of the rhs of (12) (call itT1), it takes the form:

T1 =
(

1

2s − 3

)(π
L

)3−2s δ
‖
ij

2L

{
ζH

(
2s − 3,

1

2

)
−
∞∑
n=0

(
n +

1

2

)3−2s

cos

[
2(n + 1

2)πz

L

]}
(15)

whereζH (z, a) is the well known Hurwitz zeta function. Performing the analytical extension
to thes-complex plane and taking the limits → 0, we get

T1 = − 1

6π

(π
L

)4
δ
‖
ij

{(
−7

8

)
× 1

120
−G

(πz
L

)}
(16)

where we made use ofζH (−3, 1
2) = (− 7

8)× ( 1
120) and defined

G(ξ) = −1

8
× d3

dξ3

(
1

2 sinξ

)
= 1

8

(
3

cos3 ξ

sin4 ξ
+

5

2

cosξ

sin2 ξ

)
. (17)

The other two terms of the rhs of (12) can be treated in a similar way. It is then straightforward
to show that

〈Ei(r, t)Ej (r, t)〉0 =
(π
L

)4 2

3π

[(
−7

8

) (−δ‖ + δ⊥
)
ij

1

120
+ δijG

(πz
L

)]
. (18)

Proceeding in the same way as with the evaluation of the electric field correlators, we obtain

〈Bi(r, t)Bj (r, t)〉0 =
(π
L

)4 2

3π

[(
−7

8

) (−δ‖ + δ⊥
)
ij

1

120
− δijG

(πz
L

)]
(19)

for the magnetic field correlators. A straightforward calculation along the lines given here or
the use of time-reversal invariance shows that the correlators〈Ei(r, t)Bj (r, t)〉0 are zero. In
passing, observe that no subtractions were required by our regularization procedure. This is
a common feature of regularization prescriptions based on analytical extensions. However,
other methods in which the subtraction of the field correlators with no boundary conditions
are made can also be used yielding the same results.

3. The Casimir effect for Boyer plates

As a first application of the results obtained for the field operator correlators between Boyer
plates, let us re-obtain Boyer’s result [25] for the Casimir energy density corresponding to this
unusual set-up. First, recall that the zero-point energy densityρo for the electromagnetic fields
is defined by the following vacuum expectation value:

ρ0 = 1

8π
〈E2 +B2〉0. (20)

Making use of (18) and (19) we obtain the position-dependent correlators:

〈E2〉0 =
(π
L

)4 2

3π

[
7

8× 120
+ 3G

(πz
L

)]
(21)

〈B2〉0 =
(π
L

)4 2

3π

[
7

8× 120
− 3G

(πz
L

)]
. (22)
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If we add these two equations as required by equation (20), the position-dependent terms will
cancel out and we obtain

ρ0 = 7

8

π2

720L4
(23)

which is the position-independent Casimir energy density obtained by Boyer [25]. Notice that
it is positive and leads to a repulsive force per unit area between the plates [25,27,28].

It is also convenient to analyse the behaviour of the correlators〈E2〉0 and 〈B2〉0 in
situations where one of the plates is removed. Let us first consider the limit of a single
metal plate located atz = 0. This means that we are taking the limitL→∞ in the previous
equations. The results are:

〈E2〉0 ≈ +
3

4πz4
(24)

and

〈B2〉0 ≈ − 3

4πz4
(25)

in agreement with the literature [31]. On the other hand, the limit of a single infinitely permeable
plate is obtained by removing the metal plate. This can be accomplished if we consider the
limits L→∞, z→∞ in the previous results, but withL− z� L. For this case we obtain:

〈E2〉0 ≈ − 3

4π(z− L)4 (26)

and

〈B2〉0 ≈ +
3

4π(z− L)4 . (27)

Equations (26) and (27) are new results. Let us now turn our attention to one of the most
intriguing properties of the QED vacuum between a pair of parallel plates: its anisotropy and
the concomitant consequences on the speed of light.

4. The Scharnhorst effect in spinor QED

Basically, the Scharnhorst effect [1, 2] is the velocity shift of a light wave in QED vacuum
caused by the presence of two parallel conducting plates for propagation in the region between
the plates and in a direction perpendicular to the plates. This effect was shown to occur for
small frequencies (soft photon approximation)ω � me whereme is the mass of the electron
and in the weak field limit. For the case of metallic plates, Scharnhorst [1], and later Barton [2],
showed that the phase velocity, which in this case (small frequencies) coincides with the group
velocity, is greater than its value in free space for propagation perpendicular to the plates.
However, this does not mean that the signal velocity can be greater than one because in order
to determine the wave front velocity the investigation of the dispersion relation in the infinite
frequency limit is mandatory. See [3,32–34] for more detailed discussions on this issue. The
Scharnhorst effect with boundary conditions different from the standard ones, namely, those
concerning the ubiquitous perfect metallic plates, was also considered [35]. This effect can
be understood as follows. The external field which is given by a plane wave propagating in
the constrained vacuum interacts with the quantized electromagnetic fields through fermionic
loops and therefore any change in the quantized field modes, as for example those caused by
imposition of boundary conditions, can in principle modify the wave propagation. In [1,2] this
change was induced by the presence of two perfect parallel conducting plates, while in [35] the
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same problem was considered for the unusual pair of parallel plates that is being considered
here. Since in [1,2] it is assumed that the plates do not impose any type of boundary condition on
the fermionic field, the Scharnhorst effect appears only at the two-loop level. Also, because this
effect is a perturbative one, it can be obtained by direct computation of the relevant Feynman
diagrams that contribute to the effective action: namely, the two possible diagrams for the
photon polarization tensor at two-loop level. This was precisely Scharnhorst’s approach, who,
after using a representation for the photon propagator between two metallic plates obtained by
Bordaget al [36], found for propagation perpendicular to the plates the result

v⊥ = 1 +
11π2

22 × 34× 52

α2

(meL)4
. (28)

Later, the same result was rederived by Barton [2] in a more economical way, where
the connection with the Casimir energy density is made more explicit. The starting point in
Barton’s approach is to consider the first corrections to the Maxwell Lagrangian density that
originate from the Euler–Heisenberg Lagrangian density [37] after a power expansion for weak
fields is made. For fields well below the critical valuem2

e/e, the relevant effective Lagrangian
density reads:

L = L(0) + L(1)

= 1

8π
(E2 −B2) + g[(E2 −B2)2 + 7(E ·B)2] (29)

whereg := α2/5×32×23×π2m4
e . The above Lagrangian density describes the first vacuum

polarization effects on slowly varying fields for which the conditionω � me holds and is valid
only in the weak field approximation. In other words, the first nonlinear corrections to the
Maxwell equations originating from QED are described by the quartic terms added to the usual
Maxwell Lagrangian density. The corresponding vacuum polarizationP and magnetization
M are given by:

P = ∂L(1)

∂E
= 4g(E2 −B2)E + 14g(E ·B)B (30)

and

M = ∂L(1)

∂B
= −4g(E2 −B2)B + 14g(E ·B)E. (31)

In order to include a radiative correction into the formalism, we can follow [2] and rewrite
the fields in equations (30) and (31) as the sum of two parts, one describing the quantized fields
Eq andBq and the other one describing the classical fieldsEc andBc, so that we can write:
E = Eq+Ec andB = Bq+Bc and substitute into (30) and (31). This procedure is tantamount
to the coupling of the external fields to the quantized ones by means of the intermediary action
of a fermionic loop. Keeping only terms which are linear in the classical fields, we obtain
the following expressions for the electric susceptibiltyχ(e)ij and magnetic susceptibilityχ(m)ij

tensors of the vacuum:

χ
(e)
ij = 4g[〈E2

q −B2
q〉0δij + 2< EqiEqj 〉0] + 14g < BqiBqj 〉0 (32)

χ
(m)
ij = 4g[−〈Eq2 −B2

q〉0δij + 2< BqiBqj 〉0] + 14g < EqiEqj 〉0. (33)

The dieletric and permittivity tensors of the vacuum are:

εij = δij + 4πχ(e)ij = δij +1εij (34)

µij = δij + 4πχ(m)ij = δij +1µij . (35)
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The vacuum expectation values in (32) and (33) can be easily calculated with the correlators
given by (18) and (19). If we do this, we obtain for1εij and1µij the results:

1εij = g
(π
L

)4 16

3

[(
−7

8

) (−δ‖ + δ⊥
)
ij

(
11

120

)
+ 3δijG

(πz
L

)]
(36)

and

1µij = g
(π
L

)4 16

3

[(
−7

8

) (−δ‖ + δ⊥
)
ij

(
11

120

)
− 3δijG

(πz
L

)]
. (37)

We can also derive single-plate limits for1εij and1µij . Making use of the approximations
toG(ξ) in the limitsξ → 0 andξ → π we have near the conducting plate atz = 0:

1εij = −1µij = 18g
δij

z4
(38)

and near the permeable plate atz = L:

1εij = −1µij = −18g
δij

(z− L)4 . (39)

Now, we are interested in the refraction indexn = √εµ and its first-order shift:

1n = 1
2(1ε +1µ) (40)

for directions of propagation defined by the Cartesian axes. Let us consider first a plane
wave propagating in theOX -direction with the electric field vibrating in theOZ-direction.
Then1ε = 1ε33 and1µ = 1µ22, and from (36), (37) and (40) we can easily verify
that1n = 1

2 (1ε33 +1µ22) = 0. We obtain the same result in all instances in which the
propagation is parallel to the plane of the plates. As a consequence, the speed of light remains
unchanged for propagation parallel to the plates. Now consider a plane wave propagating
along theOZ-axis, perpendicularly to the pair of plates. Consider the wave polarized in the
OX -direction, for instance. Then1ε = 1ε11 and1µ = 1µ22, and from (36), (37) and (40)
we now obtain:

1n⊥ ≈ 1
2(1ε11 +1µ22)

= +
7

8
× α2

(mL)4

11π2

22 × 34× 52
(41)

which is the result obtained by Scharnhorst [1] and re-obtained by Barton [2] multiplied by
the factor− 7

8. The speed of light in that direction will be:

v⊥ ≈ 1− 7

8
× α2

(mL)4

11π2

22 × 34× 52
< 1. (42)

The velocity of light averaged in direction and polarization for the set-up considered here
also satisfies the unifying formula written down by Latorreet al [23], which for spinor QED
reads

〈v〉 = 1

4π

∮
v(θ) d�

= 1

4π

∫ π

0

[
1− 7

8

α2

(meL)4

11π2

22 × 34× 52
cos2 θ

]
2π sinθ dθ

= 1− 44α2

135m4
e

ρ0 (43)

whereθ in the last equation is the angle between the direction of the wave propagation and the
OZ-direction andρo is given by (23). It can be shown that this formula can be obtained in the
weak field limit of a general formalism due to Dittrich and Gies in their analysis of nontrivial
vacua [24].
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5. The Scharnhorst effect in scalar QED

Quantum electrodynamic phenomena are described by spinor QED as the interaction of charged
fermions of spin1

2 with the photon field. Although this theory is highly successful, it is also
instructive to consider other theories. It may be profitable to study theories that, though not
realistic, respect important physical principles as, for instance, the gauge principle and the
relativistic invariance principle. This is the case of the so-called scalar QED, which describes
charged bosons interacting with the radiation field. Naively, we could think that the interaction
between the pseudoscalar charged mesonsπ± andK± could be described by scalar QED, but
this is not true, mainly because these mesons have an inner structure and their interaction is
dominated by the strong interaction. In fact, since there are no fundamental charged bosons
in nature, scalar QED is of limited application. However, scalar QED can be a useful toy
model in many situations and shed some light on interesting physical processes, as we shall
see. Without further apologies for considering this model, we consider in this section the
Scharnhorst effect in the framework of scalar QED. In the case of scalar QED the analogue of
the Euler–Heisenberg effective Lagrangian reads [38]:

L(1)0 = g0[ 7
4(E

2 −B2)2 + (E ·B)2] (44)

with g0 := α2/5×32×25×π2×m4
o, wheremo is the mass of the hypothetical charged boson

associated with one-loop scalar QED. As previously, the polarizationP and the magnetization
M are defined by equations (30) and (31), and as before we make use of the substitutions
E → Eq +Ec andB → Bq +Bc and keep only terms linear in the classical fields to obtain
the corrections1εij and1µij to the dielectric and permittivity tensors of the scalar QED
vacuum. The results are

1εij = 28πg0〈E2 −B2〉0δij + 56πg0〈EiEj 〉0 + 8πg0〈BiBj 〉0 (45)

1µij = −28g0〈E2 −B2〉0δij + 56πg0〈BiBj 〉0 + 8πg0〈EiEj 〉0. (46)

Now we can make use of these results and analyse the speed of light in a confined scalar QED
vacuum. Since the Scharnhorst effect for scalar QED has never been discussed before, we will
evaluate the light velocity shifts for two cases, first for two perfectly conducting parallel plates
and then for a pair of parallel plates where one is a perfectly conducting plate and the other,
an infinitely permeable one.

Consider two perfectly conducting plates, one atz = 0 and the other atz = L. Expressions
for the electric and magnetic field correlators for this case can be found in, for instance, [2].
Here we merely state the results

〈Ei(r, t)Ej (r, t)〉0 =
(π
L

)4 2

3π

[
(−δ‖ + δ⊥)ij

1

120
+ δijF

(πz
L

)]
(47)

and

〈Bi(r, t)Bj (r, t)〉0 =
(π
L

)4 2

3π

[
(−δ‖ + δ⊥)ij

1

120
− δijF

(πz
L

)]
(48)

whereF(ξ) is defined by:

F(ξ) := −1

8
× d3

dξ3

(
1

2
cotξ

)
. (49)

Now we take (47) and (48) into (45) and (46) and after some simple manipulations we end up
with

1εij = 16

3
g0

(π
L

)4
[
(−δ‖ + δ⊥)ij

(
1

15

)
+ 27δijF (ξ)

]
(50)
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and

1µij = 16

3
g0

(π
L

)4
[
(−δ‖ + δ⊥)ij

(
1

15

)
− 27δijF (ξ)

]
. (51)

With these results we can now calculate the first correction to the refraction index1n

and, consequently, the correction to the speed of light between two perfectly conducting plates
in scalar QED. As in the corresponding case of spinor QED, we find that the speed of light
parallel to the plates remains unchanged, but the speed of light perpendicular to the plates is
modified by an amount given by

1v⊥ = −1n = +
16

45
g0

(π
L

)4
> 0. (52)

It is interesting to compare this result with the analogous effect that takes place in spinor QED.
Assuming the same charge for bosons and fermions, we see that the ratio between the light
velocity shifts for scalar and usual QED is given by

1vscalar
⊥

1v
spinor
⊥

= 2

11
×
(
me

mo

)4

. (53)

Now we repeat the procedure for the unusual pair of plates that we are discussing here.
The electric and magnetic field correlators we need are given by equations (18) and (19).
Substituting into (45) and (46) we obtain

1εij = 16

3
g0

(π
L

)4
[(
−7

8

)
(−δ‖ + δ⊥)ij

(
1

15

)
+ 27δijG(ξ)

]
(54)

and

1µij = 16

3
g0

(π
L

)4
[(
−7

8

)
(−δ‖ + δ⊥)ij

(
1

45

)
− 27δijG(ξ)

]
. (55)

Hence, the speed of light between a metallic plate and an infinitely permeable one in the
direction perpendicular to the plates is modified by the amount

1v⊥ = −1n = −7

8
× 16

45
g0

( π
L4

)
< 0. (56)

The results given by equations (52) and (56) can be unified by considering the velocity of light
averaged over all directions of propagation and all possible polarizations. To accomplish this
first we write, for instance, for the case of two perfectly conducting plates:

v(θ) = 1− 16

45
g0

(π
L

)4
cos2 θ (57)

whereθ is the angle between the direction of propagation and theOZ-axis. Next we take
the average over all possible directions (as before, there is no dependence with the wave
polarization). The result is

〈v〉 = 1

4π

∮
v(θ) d� = 1− 8α2

135m4
o

(
− π2

720L4

)
(58)

so that

1〈v〉 = − 8α2

135m4
0

ρ0. (59)

Had we used equation (56), which stems from the case of a perfectly conducting plate and an
infinitely permeable one, we would have ended up with the same result (59), but this time with
ρ0 given byρ0 = ( 7

8)× (π2/720L4). This is the scalar QED version of the unifying formula
obtained by Pascualet al for spinor QED [23] and it corresponds, as in the spinor QED case,
to the weak field limit of a more general approach due to Dittrich and Gies [24].
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6. Final remarks

In this paper we have quantized the electromagnetic field between an unusual pair of parallel
plates: a perfectly conducting plate and an infinitely permeable one. Then we computed some
relevant field operator correlators. With these correlators at our disposal, we easily re-obtained
the zero-point energy density for the set-up considered here which was first obtained by Boyer
and we also discussed the Scharnhorst effect for this kind of boundary conditions. We also
discussed for the first time the Scharnhorst effect in the context of scalar QED and established
for this case a unifying formula analogous to that discussed by Latorreet al [23] for the usual
spinor QED. This unifying formula will also correspond to the weak field limit of Dittrich
and Gies’ approach if in their formalism the appropriate effective Lagrangian density is used.
Moreover, we showed that apart from numerical factors we can say that the usual spinor QED
vacuum and the scalar QED vacuum behave in a similar way in the presence of material plates
when we assume that these plates impose boundary conditions only on the photon field and
not on (fermionic and bosonic) matter fields. However, we expect a different behaviour of
the usual QED vacuum and the scalar QED vacuum when we impose boundary conditions
on the matter fields, since under the imposition of boundary conditions the former exibits
paramagnetic characteristics [39], while the latter exhibits diamagnetic ones [40]. Some work
about the influence on the speed of light of boundary conditions imposed on matter fields
instead of boundary conditions on the photon fields is in progress, but at the moment the
authors are not able to give a conclusive result.
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